
A survey of approaches to the shortest vector problem on lattices: the

LLL algorithm and beyond

Jeremy Porter, CSCI-6101

April 18, 2011

Contents

1 Introduction and motivation 2
1.1 Number theory and cryptography . 2
1.2 Lattice basics . 3
1.3 Lattice problems . 4

2 The Lenstra-Lenstra-Lovasz algorithm 5
2.1 The theory . 5
2.2 The algorithm . 9
2.3 Correctness . 10
2.4 Termination . 11
2.5 Complexity and analysis . 12

3 Improvements and variations on LLL 13
3.1 Schönhage, 1984 - blockwise reduction . 13
3.2 Schnorr, 1987 - “Schnorr’s algorithm” . 13
3.3 Schnorr, 1988 - deep insertions . 15
3.4 Storjohann, 1996 . 15

4 Summary and conclusions 17

1

Abstract

Lattices admit several well-known problems which have been shown to be computationally hard to solve
exactly, but which allow polynomial time approximation algorithms. The roots of this research are found
in computational number theory, so it is perhaps no surprise that more recent research has found exciting
applications in cryptography and cryptanalysis.

We will briefly introduce the concepts behind lattices and the most commonly posed lattice prob-
lems, with our main focus being on the presentation of the famous Lenstra-Lenstra-Lovász algorithm,
and several of the most crucial improvements which have been made since its discovery. As much of the
recent research requires considerable familiarity with past results, and as these results are themselves not
trivial to grasp, we have focused on presenting details of the fundamental material rather than of the
cutting edge research. Our goal is to provide a solid base of understanding, from which a reader would
feel comfortable moving to more recent and in-depth results.

1 Introduction and motivation

1.1 Number theory and cryptography

Lattice problems have long been known to have deep relations to various fields of mathematics. The
original LLL algorithm paper [14] was intended as a method for lattice basis reduction in order to ef-
ficiently factor polynomials in Q[x]. It was not until later that the more general applications of basis
reduction were explored, and continue to be explored today. Basis reduction in general, and specifically
the LLL algorithm is used to study a variety of other problems, including diophantine approximation
(approximating r ∈ R with r′ ∈ Q, within some given parameters) [11], computing ideal class groups over
the ring of integers of a number field [28], and factorization problems related to RSA [15].

This last use is related to perhaps the most stimulating motivation for modern research into lat-
tice basis reduction. Lattices have strong potential for applications to cryptography, both as a tool for
cryptanalysis [22, 12] of RSA and knapsack-style systems (among others), and also in the construction
of wholly new cryptographic systems. Of particular interest is the equivalence of average-case/worst-case
complexity on the unique shortest-vector lattice problem (a variation of the traditional shortest vector
problem). In [1], Ajtai used lattices to describe for the first time a cryptographic primitive which admit-
ted a polynomial-time solution to a random instance only if there were a polynomial-time solution to the
worst-case instance of this particular lattice problem. Such provable security is very attractive from a
cryptographic standpoint [20].

A public-key cryptosystem was later constructed around this principle [2], and while practically ineffi-
cient it served to motivate further research. Perhaps because the relative difficulty of the unique shortest
vector problem is poorly understood with respect to other lattice problems, the two most well-established
lattice-based public-key cryptosystems are based on the CVP and SVP lattice problems (see section 1.3);
these are the GGH and NTRU systems, respectively. However, neither system has approached the level
of popularity of competing, non-lattice-based systems like RSA or ECC. Still, lattice-based cryptography
is an active area of research, with recently renewed interest because of its potential resilience to post-
quantum cryptanalysis [18].

2

1.2 Lattice basics

We will attempt to present the basic essentials necessary for studying computationally hard problems on
lattices. As we have already stated however, lattices are an interesting focal point of several branches of
mathematics and are widely studied in their own right. For more details on lattices and their mathemat-
ical underpinnings, and for the background of the material we present here, see [7].

An n dimensional lattice L is an additive subgroup of Rn such that

L = L(b1, . . . , bn) =

{
n∑
i=1

aibi : ai ∈ Z

}
(1.2.1)

where the bi are linearly independent and span Rn. In other words, a lattice is a free Z-module of rank
n, with the elements bi acting as the basis vectors. Of course, a rank n lattice may also be thought
of as living in Rm for m > n. Each rank n lattice L therefore has at least (n − 1) sublattices Li for
i = 1, . . . , (n− 1), where Li is the lattice formed from the first i basis vectors b1, . . . , bi.

Geometrically, lattices form tilings of the space Rn, dividing it into infinitely many identical funda-
mental regions. The volume of this region is intrinsically related to the lattice, so while we may choose
any suitable basis to represent L, the value of vol(L) is independent of this choice. Another invariant
value is the determinant det(L) =vol(L)2, so named because lattices also admit matrix representations.

With basis vectors bi = (bi1, bi2, . . . , bin), write

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

. . .
...

bn1 bn2 . . . bnn

 (1.2.2)

where the i-th row consists of the elements of the i-th basis vector. This matrix B is then the generator
matrix for the lattice, since any vector v on the lattice may be written as

v = ξB

where ξ = (ξ1, . . . , ξn) is a vector with elements all in Z. This can simply be thought of as shorthand for
the definition in equation (1.2.1). The matrix G = MMT is called the Gram matrix, and its determinant
satisfies det(G) = vol(L)2, which gives us the name for det(L).

We will use the usual linear algebra definitions of vector length (or norm, in this case the `2 norm)
and inner products, so that |x| =

√
x21 + . . . x2n, and 〈x, y〉 =

∑
i xiyi respectively.

As mentioned, lattices have a natural connection with number theory. As the details are beyond our
scope, we will simply sketch the basic connection. We observed that any lattice vector x ∈ L can be
written as a sum of integer multiples of the basis vectors b1, . . . , bn, or in other words that

x = ξ1b1 + ξ2b2 + · · ·+ ξnbn = ξ ·B

where ξi ∈ Z and ξ ∈ Zn. Since B is a fixed value for the lattice, each vector x is uniquely determined by

3

the elements of ξ. In particular, we may compute the square of the norm ||x|| = |x|2 as

||x|| =
n∑
i=1

x2i =
n∑
i=1

(ξ1b1i + ξ2b2i + · · ·+ ξnbni)
2

=

n∑
i=1

 n∑
j=1

ξjbji

2

where bij is again the j-th element of the basis vector bi. Expanding this expression and collecting like
terms, we find an n variable polynomial

∑n
i=1 ciξi = f(ξ) given in terms of the integers ξi, corresponding

to the squared norm of the lattice vector determined by ξ. This degree 2 polynomial is homogeneous, so
it is a quadratic form. Quadratic forms are central objects of study in varied fields of mathematics, which
offers an immediate setting for any studies on lattices.

1.3 Lattice problems

Shortest Vector Problem (SVP)

Given a lattice L of dimension n defined by the basis elements b1, . . . , bn, find the ` ∈ L of minimum,
non-zero length. For arbitrary dimension n, the only algorithms which guarantee an exact solution run
in exponential time. An exact solution can be found by using the AKS sieve [3], which operates in 2O(n)

time and space.

Closest Vector Problem (CVP)

Given a lattice L of dimension n defined by the basis elements b1, . . . , bn, and a target t ∈ Rn, find ` ∈ L
which minimizes the distance between their end points. This can be solved exactly using HKZ-bases (see
definition 2.6) and a bounded enumeration approach in O(nns) arithmetic operations, where s is the bit
size of the input [13]. Using dual HKZ-bases (a concept we will not explore), an exact solution is given
in n!sO(1) operations [4].

Shortest Independent Vector Problem (SIVP)

Given a lattice L of dimension n defined by the basis elements b1, . . . , bn, find n linearly independent
`i ∈ L which minimizes maxi |`i|. We can find an exact solution using a polynomial time reduction be-
tween SIVP and CVP, which has the same bound n!sO(1) as CVP [17].

Following the polynomial time reductions given in [17], it is also possible to solve any of these three
problems by a reduction to a variant of CVP called CVPP. This accepts as input the lattice, the target
vector, and a polynomially sized “hint” which relies exclusively on the lattice. This “CVP with Prepro-
cessing” variant is solved in [21] by pre-computing the Voronoi cell of the lattice as the hint. This Voronoi
approach to CVPP uses Õ(22n+o(n)) operations, and therefore provides exact solutions to each of SVP,
CVP, and SIVP within the same bound. Indeed, this is the asymptotically fastest approach to finding
exact solutions to each of the problems.

4

SVP, CVP, and SIVP are known to be NP-hard, so the performance of the above solutions is un-
derstandable. In particular, no polynomial algorithms are expected for their exact solutions. However,
polynomial time approximation algorithms do exist for SVP and CVP [16]. Finding an approximate
solution to SVP using any approximation factor ≤

√
2 is provably NP-hard, but we will pursue much

larger factors and so be able to consider polynomial time approximations. While CVP and SIVP are
interesting both in their own right and for their use in cryptography, the most famous problem is SVP,
because of the algorithm which lead to its first well-known approximation solution. This solution is the
LLL algorithm, which takes an arbitrary lattice basis as its input, and returns a vector within a factor of
2O(n) of the lattice’s shortest overall vector.

2 The Lenstra-Lenstra-Lovasz algorithm

The Lenstra-Lenstra-Lovasz (LLL) algorithm [14] was originally presented as a method for factoring poly-
nomials; however, the approach used was also a natural fit for approaching the SVP on lattices. It does
not offer an exact solution, however it does guaranteed an approximation bound of 2O(n). Throughout
this section, we will summarize the key results for the algorithm and the underlying mathematics. Our
details are based on an amalgam of the presentations in [19, 14, 6, 5].

2.1 The theory

The algorithm relies primarily on two key theorems borrowed from linear algebra, presented here as the-
orems 2.1 and 2.2.

Theorem 2.1 (Hadamard). For an n-dimensional lattice L with basis vectors b1, . . . , bn and determinant
det(L),

det(L) ≤
n∏
i=1

|bi|.

In particular, if the basis b∗1, . . . , b
∗
n is orthogonal, then this becomes the equality

det(L) =

n∏
i=1

|b∗i |.

Gram-Schmidt orthogonalization allows us to compute an orthogonal basis from a basis which need
not be orthogonal. This is typically used to find an orthonormal basis, where the length of each orthogonal
basis vector is also normalized to be of unit length; however, we omit this normalization step as it is not
needed for our purposes.

Theorem 2.2 (Gram-Schmidt). Given a basis b1, . . . , bn for a lattice L, inductively define

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j

where

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

.

Then these b∗i form an orthogonal basis for the same lattice L.

5

So for instance, given L(b1, . . . , bn) we can compute

b∗1 = b1

b∗2 = b2 −
〈b2, b∗1〉
〈b∗1, b∗1〉

b∗1

b∗3 = b3 −
〈b3, b∗2〉
〈b∗2, b∗2〉

b∗2 −
〈b3, b∗1〉
〈b∗1, b∗1〉

b∗1

...

where the lattice L(b∗1, . . . , b
∗
n) is identical to the original, and each pair of vectors b∗i , b

∗
j with i 6= j is

orthogonal.

Using the same notation from these two theorems, we define two conditions on lattice bases which
must be met for the LLL algorithm to operate. Collectively, we will refer to these as the “LLL conditions”.

Definition 2.3. A lattice basis is size-reduced if the Gram-Schmidt coefficients satisfy |µi,j | ≤ 1
2 for

1 ≤ j < i ≤ n.

Phrased in terms of the Gram-Schmidt orthogonalization process, this means all coefficients used to
compute the vectors b∗i are bounded above by 1

2 .

Definition 2.4. A lattice basis is α-reduced if

|b∗i |2 ≥
1

α
|b∗i−1|2.

We remark that if the lattice is already size-reduced, this is equivalent to requiring

|b∗i |2 ≥ (δ − µ2i,i−1)|b∗i−1|2

for 1 < i ≤ n, where δ = 1
α + 1

4 .

Definition 2.5. A lattice basis is LLL-reduced if it is both size-reduced and 2-reduced.

When needing the distinction, we will refer to size-reduction and 2-reduction as the first and second
LLL conditions, respectively. Note that using the definition of the Euclidean norm, our notion of LLL
reduction sets δ = 3

4 and can be re-written to match its form in [14] as

|b∗i |2 ≥ (
3

4
− µ2i,i−1)|b∗i−1|2

|b∗i |2 ≥
3

4
|b∗i−1|2 − µ2i,i−1|b∗i−1|2

|b∗i + µi,i−1b
∗
i−1|2 ≥

3

4
|b∗i−1|2.

A stronger condition on lattice bases gives rise to an alternate notion of reduction, named for Hermite,
Korkin, and Zolotarev:

6

Definition 2.6. A lattice basis if HKZ-reduced if is it both size-reduced and if b∗i is the shortest non-zero
vector for the sublattice Li.

We will not deal with this concept directly; however, many modern approaches to hard lattice prob-
lems require HKZ-reduced lattice bases instead of LLL-reduced lattice bases, and we will make reference
to these later.

With these definitions in mind, we are led to the fundamental result of the LLL algorithm.

Theorem 2.7 (Lenstra, Lenstra, & Lovasz). A lattice L with basis vectors b1, . . . , bn satisfying both the
first and second LLL conditions (2.5) has the following properties:

1. det(L) ≤
n∏
i=1

|bi| ≤ 2
n(n−1)

4 · det(L)

2. |b1| ≤ 2
n−1
2 · |x|, for all non-zero vectors x ∈ L

We prove each claim separately.

Proof of (1). The LHS of the first property is the inequality det(L) ≤
∏n
i=1 |bi|, which is simply the

Hadamard inequality of Theorem 2.1. The RHS of this property is the inequality
∏n
i=1 |bi| ≤ 2

n(n−1)
4 ·

det(L). Recall that combining the two LLL conditions for (2.5) gives

|b∗i |2 ≥

(
3

4
−
(

1

2

)2
)
|b∗i−1|2

≥ 1

2
|b∗i−1|2.

By a simple induction argument on the index i, we therefore have

|b∗j |2 ≤ 2i−j |b∗i |2 (2.1.1)

for all i ≥ j.

Recall too that the Gram-Schmidt process in Theorem 2.2 defines the b∗i as

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j

so that

|bi| =

∣∣∣∣∣∣b∗i +

i−1∑
j=1

µi,jb
∗
j

∣∣∣∣∣∣
and therefore

|bi| ≤ |b∗i |+

∣∣∣∣∣∣
i−1∑
j=1

µi,jb
∗
j

∣∣∣∣∣∣

7

by the triangle inequality. This implies

|bi|2 ≤ |b∗i |2 +

i−1∑
j=1

1

4
2i−j |b∗i |2

= |b∗i |2
1 +

1

4
·
i−1∑
j=1

2j


= |b∗i |2

(
1 +

1

4
·
[

2i − 1

2− 1
− 1

])
= |b∗i |2

(
1 +

1

4

[
2i − 2

])
≤ 2i−1 · |b∗i |2 (2.1.2)

Now since |bi|2 ≤ 2i−1 · |b∗i |2 and |bi| ≤ 2
i−1
2 · |b∗i |, we can write

n∏
i=1

|bi| ≤
n∏
i=1

2
i−1
2 · |b∗i |

= 2(
∑n

i=1
i−1
2)

n∏
i=1

|b∗i |

= 2
n(n−1)

4

n∏
i=1

|b∗i |

= 2
n(n−1)

4 · det(L)

which gives the desired RHS inequality.

Proof of (2). For any non-zero vector x ∈ L, we may write

x =

i∑
j=1

sjbj =

i∑
j=1

tjb
∗
j

with si ∈ Z, tj ∈ R and i being the largest index having ti 6= 0. We observe that ti and si must in fact
be equal. To see this, consider

x =
i∑

j=1

tjb
∗
j

= ti · b∗i + ti−1 · b∗i−1 + · · ·+ t1 · b∗1

and using the Gram-Schmidt identity of Theorem 2.2, this gives

= ti

(
bi −

i−1∑
k=1

µi,kb
∗
j

)
+ ti−1 (. . .) + . . .

= tibi + . . .

8

where we really only care about the first term of the sum. Importantly, this coefficient ti is the only one
associated to the vector bi in this sum, and we may easily write x =

∑i
j=1 sjbj where si will be the only

coefficient associated to the vector bi. As these sums are equal, so too are the coefficients ti and si.

This forces ti 6= 0 to be an integer, allowing us to write

|x|2 ≥ t2i |b∗i |2

and trivially implying |x|2 ≥ |b∗i |2 for all i. Since equation (2.1.2) in the proof of part 1 showed that
|bj |2 ≤ 2i−1|b∗i |2 for 1 ≤ j ≤ i ≤ n, then letting j = 1 gives

|b1|2 ≤ 2i−1|b∗i |2

≤ 2n−1|b∗i |2 (since i ≤ n)

≤ 2n−1|x|2.

Taking the square root of both sides gives the inequality |b1| ≤ 2
n−1
2 |x|, as desired.

2.2 The algorithm

The LLL algorithm (Figure 1 in [14]) is an “induction”-style algorithm. The basis vectors bi are examined
in order for i = 1 to i = k, and we ensure that the LLL conditions are satisfied over this range. Then,
under the assumption that the conditions are satisfied for i ≤ k, we are able to increment k and enforce the
same LLL conditions for the basis vector bk+1. Beginning with k = 2, we terminate when k = n and have
satisfied the LLL conditions over all basis vectors. Operations on the basis vectors should be thought of as
happening in situ unless otherwise specified, as their order is significant to the functioning of the algorithm.

Algorithm 1 : LLL basis reduction algorithm

1: procedure LLL-REDUCE(b1, . . . , bn)
2: k := 2
3: while k ≤ n do
4: SIZE-RED(k) . Size-reduce all basis vectors up to bk

5: if |b∗k|2 <
(
3
4 − µ

2
k,k−1

)
|b∗k−1|2 then . Check second LLL condition

6: SWAP(bk, bk−1)
7: k := max(2, k − 1) . First LLL condition may be invalidated
8: else
9: k := k + 1

10: end if
11: end while
12: end procedure

Algorithm (1) gives the pseudocode for the LLL algorithm, with calls to the two subroutines SIZE-RED
and SWAP. The subroutine SIZE-RED(k) is given explicitly in algorithm (2), and ensures that the basis
vectors are size-reduced for all i ≤ k. The subroutine SWAP(bk, bk+1) simply swaps the positions of its two
input basis vectors:

9

(b1, b2, . . . , bj , bj+1, . . . , bn)ySWAP(bj ,bj+1)

(b1, b2, . . . , bj+1, bj , . . . , bn).

The progress of LLL-REDUCE is straightforward, except perhaps at line 7 where the loop index is po-
tentially decremented instead of incremented. This is because after discovering the second LLL condition
was not met, the algorithm swapped basis vectors bk, bk+1 to compensate. However, since bk has now been
replaced with another vector, we no longer have the strong induction guarantee that all bi are size-reduced
for i ≤ k. We must re-check the size reduction condition to re-establish the invariant.

Algorithm 2 : Size reduction algorithm

1: procedure SIZE-RED(k)
2: for ` = (k − 1) to 1 do
3: r := dµk,`c
4: bk := bk − r · b`
5: µk,` := µk,` − r
6: end for
7: end procedure

We also remark that the parameter δ was chosen arbitrary for the original algorithm and in fact the
only restrictions are that 1

4 ≤ δ ≤ 1. Assuming δ = 1, this would give the best possible bound of(
4

3

)n
2

(2.2.1)

on our approximation factor; however, we would then no longer have a guarantee of polynomial time ter-
mination using the same argument as given above. In the end, the selection of this “twiddle factor” does
not play a very significant role, and while there is research on the topic, it is not germane to our discussion.

2.3 Correctness

Once we are convinced that both LLL conditions are met from (2.5), the correctness of the LLL algorithm

is simply an appeal to theorem 2.7 which states that b1 must be within a factor of 2
n−1
2 of the shortest

vector in L. The second LLL condition is met explicitly by the if/then statement on line 5 of LLL-REDUCE.
However, it is not as apparent that the first LLL condition is met by the operations in SIZE-RED. To see
this, recall the definition

µk,` =
〈bk, b∗` 〉
〈b∗` , b∗` 〉

from theorem 2.2. In line 4 of SIZE-RED we replace bk with bk − r · b`, so that updating the coefficient
µk,` should give

µ′k,` =
〈bk − r · b`, b∗` 〉
〈b∗` , b∗` 〉

=
〈bk, b∗` 〉 − r · 〈b∗` , b`〉

〈b∗` , b∗` 〉
.

Since
〈b∗` ,b`〉
〈b∗` ,b

∗
` 〉

= 1, this is just

µ′k,` = µk,` − r,

10

and on line 3 we chose r so that it was at most 1
2 away from µk,`. Hence, the updated value given by line

5 satisfies µ′k,` ≤
1
2 as desired.

Since both LLL conditions are met at the end of the algorithm, we need only show termination to
know that the output will be LLL-reduced as desired.

2.4 Termination

Although the procedure LLL-REDUCE only consists of a single while loop, it is not at all obvious whether
the algorithm will terminate. This is because the index variable k may either be incremented or decre-
mented on each run through the loop. To show that it does in fact terminate, we use a potential function
argument.

First, recall the definition of Li as the sublattice of L formed from the first i basis vectors b1, . . . , bi.
Let

di = det(Li)
2 =

∏
1≤ j ≤i

|b∗j |2 (2.4.1)

to be the square of the determinant of Li, and

D =

n∏
i=1

di

be the product of these squared determinants for the first i sublattices. In other words,

D =
n∏
i=1

di =
n∏
i=1

 i∏
j=1

|b∗j |2
 .

We observe that the SIZE-RED subroutine has no effect on the value of any of the |b∗i |, and it is only
the calls to SWAP which may potentially alter these values, and hence the value of di. If SWAP(k − 1, k) is
called and (k − 1) = i, then the basis vectors for the lattice Li change from being

{b1, . . . , bk−2, bk−1}

to being
{b1, . . . , bk−2, bk},

and the value of di changes accordingly. On the other hand, if i 6= (k− 1) then there are two possibilities,
neither of which see Li change:

• i < (k − 1), and so the basis vectors being swapped are not part of Li

• i > (k − 1), and the lattice Li before SWAP is identical to Li afterwards, since

{b1, . . . , bk−1, bk, . . . , bi} = {b1, . . . , bk, bk−1, . . . , bi}

Having already defined D as the product of squared determinants for all sublattices Li, let D′ be the
same value after a single call to SWAP(bk, bk−1). The ratio of these values is therefore

11

D′

D
=

(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk))

2(∏k−2
i=1 di

)
· det(L(b1, . . . , bk−2, bk−1))2

=

(∏k−2
j=1 |b∗j |2

)
· |b∗k|2∏k−1

j=1 |b∗j |2

=
|b∗k|2

|b∗k−1|2
.

Since the LLL conditions guarantee that |µi,j | ≤ 1
2 for 1 ≤ j < i ≤ n and |b∗i |2 ≥ (34 − µ

2
i,i−1)|b∗i−1|2

this implies
|b∗i |2

|b∗i−1|2
≤ 3

4
and so D′ ≤ 3

4
·D.

Letting D(m) be the value of D after m swaps, we have by induction that

0 ≤ D(m) ≤ (3/4)m ·D.

After each SWAP operation, the value of D is decreasing by at least a factor of 3
4 . From the other

end, we can argue using Hermite’s constant (Prop. 6.4.1 in [6]) that each di is bounded from below by
a positive constant depending only on the sublattice Li, so therefore D is also bounded from below by a
positive constant. Since D is decreasing by a constant factor with each call to SWAP, but cannot decrease
below a positive constant, there can only be finitely many calls to SWAP. And since the loop index of
algorithm 1 is decremented only when SWAP is called, we know that the index k must reach its maximum
value after finitely many iterations, thus the loop (and the algorithm) must terminate.

2.5 Complexity and analysis

In analyzing the complexity of the LLL algorithm or its later variants, we must take care on the issue of
integer accuracy. In order to eliminate the need for arbitrary precision in intermediate results, a bound
B is typically introduced such that |bi|2 ≤ B for all 1 ≤ i ≤ n, which in turn bounds the integers in any
operation to having O(n logB) bits.

There are essentially two areas of LLL-REDUCE in algorithm (1) where computational work is done:
when SIZE-RED is called and when SWAP is called. Everything else in the procedure only contributes O(1)
for each call to either of these subroutines. Moreover, since the loop index k is decremented iff SWAP is
called, the number of calls to SIZE-RED is equal to the number of times the index k is incremented, which
can be at most n − 1 more times than it is decremented. Thus, if we determine the number of calls to
SWAP we are also bounding the number of calls to SIZE-RED within a constant factor.

Recall the value D defined in our potential function argument above, and observe that D must be

12

bounded by

D =

n∏
i=1

i∏
j=1

|b∗j |2

≤
n∏
i=1

i∏
j=1

B

≤ B
n(n−1)

2 .

Since D decreases by a factor of at least 3
4 for each call to SWAP, and D ≥ 1, there can be at most

log 3
4

(
B

n(n−1)
2

)
= O

(
n2 log(B)

)
calls to SWAP in total, with each call performing only O(1) operations. This also gives a bound of
O(n2 log(B)) calls to SIZE-RED, which loops over at most n vectors and updates at most n elements for
each vector. Thus, the calls to SWAP require O(n2 log(B)) operations, and the calls to SIZE-RED require
O(n4 log(B)) arithmetic operations. The final complexity of the LLL algorithm is therefore O(n4 log(B)),
as demonstrated in both [14] and [29].

3 Improvements and variations on LLL

3.1 Schönhage, 1984 - blockwise reduction

In [27], Schönhage expanded the usual concept of 2-reduction to that of semi-reduction, which is when a
basis b1, . . . , bn satisfies

|b∗r |2 ≤ 2n+s−r|b∗s|2

for all 1 ≤ r < s ≤ n. Schönhage then made two key observations: first, that the size reduction operations
(calls to SIZE-RED) are the most expensive part of the LLL algorithm, and second, that each 2-reduction
operation (calls to SWAP) necessitated an extra size-reduction operation. These are the “backtrack” oper-
ations made after calls to SWAP, which are needed to restore the size reduction invariant |µi,j | ≤ 1

2 .

To limit the amount of backtrack needed, Schönhage opted to 2-reduce blocks of basis vectors together,
instead of using SWAP to 2-reduce only a pair of basis vectors at a time. Blockwise 2-reducing a set of
basis vectors incurs more overhead than performing a simple SWAP. However, Schönhage also observed
that the choice of always calling SWAP on the non-2-reduced vector of smallest index bk was arbitrary, and
in fact other choices of index would be valid. The concept of semi-reduction was then used to make clever
choices as to which blocks of basis vectors will be 2-reduced on each pass of the algorithm, and this is
enough to minimize the overhead costs. The final result is an improvement to O(n3 log(B)) complexity
when the basis vectors are bounded by B.

3.2 Schnorr, 1987 - “Schnorr’s algorithm”

In [24], Schnorr proposed a semi block-2k reduction algorithm which was one of the first serious devia-
tions from the basic LLL framework. Even more importantly, it provided a significant reduction in the

13

approximation factor, allowing shortest basis vectors to be found while still guaranteeing polynomial time.
Improvements to this approach along with modern summaries of the algorithm can be found in

Let

πi : Rn →
∑
j≥i

b∗jR

πi(bi) 7→ b∗i

denote the mapping from an n-dimensional lattice vector onto the subspace of Rn orthogonal to b1, . . . , bi−1.
Where the LLL algorithm size-reduced all basis vectors bi for 1 ≤ n, the block-2k approach instead divides
these basis vectors into n/k blocks of k basis vectors

{πk(i−1)+1(bk(i−1)+1)), . . . , πk(i−1)+1(bki)}

with 1 ≤ i ≤ n
k , and treats each block as corresponding to a rank k lattice Lki with the same index

1 ≤ j ≤ n
k . It also divides the basis vectors into (n/k − 1) blocks of 2k vectors

{πk(i−1)+1(bk(i−1)+1)), . . . , πk(i−1)+1(bki+k)}

with 1 ≤ i ≤ n
k − 1, and treats each block as corresponding to a rank 2k lattice L2k

i .

Looping over i, each Lki is then HKZ-reduced and size-reduced. Next, a step is taken analogous
to the call to SWAP in our version of LLL-REDUCE, algorithm 1: we first find the minimum j such that
|b∗jk|2 > 2|b∗jk+1|2, and call SWAP(b∗jk, b

∗
jk+1). We then apply HKZ reduction to the two rank k lattices

Lkj−1, L
k
j which contains basis vectors affected by this swap. Finally, we check the inequality

det(Lki) >
4

3
βkk det(Lki+1) (3.2.1)

where βk is defined as

sup
i


(

det(Lki)

det(Lki+1)

) 1
k

 .

Exactly where this βk constant comes from is not important for us, although we will use it again momen-
tarily to show that Schnorr’s algorithm returns a desirable result. If inequality (3.2.1) is not satisfied, we
apply HKZ reduction to the rank 2k lattice L2k

j−1, otherwise we exit the loop.

Following this process guarantees that each sublattice Lki is HKZ reduced, and because of our opera-
tions on the sublattices L2k

j we are also guaranteed that

(
det(Lki)

det(Lki+1)

) 1
k

≤ (1 + ε)βk.

This, along with the upper bound βk ≤ 4k2, leads to the approximation factor

|b1|
min{x ∈ L}

≤ (4k2)
n
2k .

14

This is a significant improvement on the best possible upper bound given for the LLL algorithm in equation
(2.2.1), and Schnorr proved it to run in

O(n4 log(b) + b
k
2
+o(k)b2 log(B))

arithmetic operations on O(n log(B))-sized integers, which is still polynomial in the dimension, and es-
sentially degrades to the complexity of the original LLL when k = 1

3.3 Schnorr, 1988 - deep insertions

In [25], Schnorr focused on improving the LLL approach to integer accuracy. Performing the Gram-
Schmidt orthogonalization process to compute the coefficients µi,j potentially requires O(n logB) bits for
each integer, whether an intermediate or final value. It is possible to use floating point arithmetic to avoid
the integer arithmetic on such large values; however, it would be necessary to maintain a minimum level of
integer accuracy for this variation to have the same guarantee on its output as the original LLL algorithm.

Schnorr’s contribution was to propose a self-correction method that allowed for approximate rational
arithmetic instead of floating point arithmetic, while still keeping the approximation error in check. This
modified algorithm still used O(n4 log(B)) arithmetic operations; however, the arithmetic used integers
bounded by O(n+log(B)) instead of O(n log(B)). Combining this approach with the semi-reduction meth-
ods of Schönhage, Schnorr was also able to reduce the number of arithmetic operations to O(n3.5 log(B))
on integers of the same bound.

Schnorr later proposed another popular variant along with Euchnerr [26], which involved so-called
“deep insertions”. This modified the 2-reduction behaviour of SWAP(bk, bk+1), allowing the subroutine
to move the vector bk+1 farther back (or “deeper”) into the list of previously processed basis vectors.
Specifically, the modified SWAP would find a minimal index i < k which still decreased |b∗i |2 by the factor
δ = 1

α + 1
4 (recall this is δ = 3

4 in the case of LLL). The basis vector bk would be moved to position i,
and the position of all basis vectors bi, . . . , bk−1 would be increased by one. Also present in this work was
another block-wise HKZ reduction algorithm or “BKZ” algorithm (distinct from the method of section
3.2), which reduces lattice bases using the stronger notion of HKZ reduction (definition 2.6) over LLL
reduction. In practice, this produces much shorter vectors than the original LLL algorithm, but at the
cost of guaranteed polynomial time complexity: in the worst case, the deep insertion/BKZ algorithm may
take super-exponential time.

3.4 Storjohann, 1996

In [29], Storjohann re-cast the LLL algorithm’s operations in terms of matrix arithmetic. Using the
method of LU decomposition from linear algebra, we may uniquely factor U = LB where B is the
generating matrix (1.2.2) of a lattice, U is upper triangular, and L is lower triangular. In this case, the
matrix U can be uniquely written as

U =


d1 d1µ2,1 d1µ3,1 . . . d1µn,1

d2 d2µ3,2 . . . d2µn,2
d3 . . . d3µn,3

. . .
...
dn


15

where the µi,j are as in theorem 2.2, and the di are as in equation (2.4.1) of the LLL potential function
argument. Both U and the generating matrix B are maintained throughout the algorirhtm, where B
initially contains the n basis vectors as its rows. Whenever SWAP or SIZE-RED are called, the rows of
B are updated as usual, and then row operations are used to update U in parallel. Size-reducing the
basis vector bk involves operating only on the k-th row in A and the k-th column in U . Performing the
2-reduction step on basis vectors bk, bk−1 involves interchanging the k-th and (k− 1)-th rows of A, and a
slightly more complicated set of operations on U :

• set Uk,j :=
1

dk−1
(dk−2 · Uk,j + dk−1µk,k−1 · Uk−1,j)

• interchange row k with row k − 1

• interchange column k with column k − 1

• set Uk,j :=
1

dk−2
(dk−1 · Uk,j − dk−1µk,k−1 · Uk−1,j)

In the following expanded version of the matrix U adapted from [29], we can clearly see that the above
operations only affect matrix elements in three distinct regions.

U =



d1 . . . d1µk−2,1 d1µk−1,1 d1µk,1 d1µk+1,1 . . . d1µn,1
. . .

...
...

...
...

...
dk−2 dk−2µk−1,k−2 dk−2µk,k−2 dk−2µk+1,k−2 . . . dk−2µn,k−2

dk−1 dk−1µk,k−1 dk−1µk+1,k−1 . . . dk−1µn,k−1
dk dkµk+1,k . . . dkµn,k

dk+1 . . . dk+1µn,k+1

. . .
...
dn


Specifically, having divided the matrix into nine regions with these double lines, if we number the

regions 1-9 in a left-to-right, top-to-bottom fashion, then only the elements contained in regions 2, 5, and
6 need to be altered.

The key observation for Storjohann’s improvement was to then notice that the loop within SIZE-RED

was unnecessary for the final output of the algorithm to remain correct. In fact, if we are willing to tem-
porarily remove our size-reduction invariant, then each call to SIZE-RED only requires a single iteration
of its loop to maintain 2-reduction of the basis. This lowers the overall workload of LLL to O(n2 logB)
arithmetic operations, at the cost of no longer having a size-reduced basis given as output. However, at
the end of the algorithm we can restore the size-reduction invariant in a single pass over all basis vectors,
once they are already 2-reduced. This final step adds some overhead, but it can be limited by using the
above matrix representations. The final result is an LLL variant which has the same bounds on the size
of its minimal output vector, but only requires O(n3 logB) arithmetic operations, using integers with
O(n logB) bits as usual.

16

4 Summary and conclusions

Moving beyond initial improvements

The variations proposed by Schnorr [24] are still regarded as perhaps the best version of the LLL algorithm,
with Schnorr and Euchnerr’s BKZ variant [26] next preferred. Despite the possibility for super-exponential
worst case running time, the BKZ algorithm and its successor variants are preferred as a matter of prac-
tice, and have been experimentally verified to perform better in some instances [10].

Perhaps surprisingly, the various flavours of the LLL algorithm have remained competitive since the
original algorithm was proposed in 1982. The recently proposed variant of LLL called L2 was significant
[23], as it was the first algorithm to offer LLL reduction with complexity that only grows quadratically
with respect to the bounded bit size logB. Yet the overall complexity was still essentially O(n5 log2(B)),
which is not too far from the original bound.

Indeed, the only polynomial time algorithms which have provably better approximation bounds are
the blockwise HKZ algorithm of Schnorr [24] (later refined in [8]), and a new blockwise reduction ap-
proach presented in [9]. And although these differ sufficiently from the LLL approach to be classified as
a new category, and indeed are sufficiently complicated to warrant more background than we are able to
provide here, there is no denying the powerful influence of the LLL approach still visible in these modern
variations. Clever basis reduction as a means to producing a “somewhat short” vector remains the core
of the approach.

A significant problem arises with comparing SVP approximation approaches, in the form of distin-
guishing between an algorithm being “asymptotically faster” versus “faster in practice”. This limits any
definitive conclusions on which approach is used more often, or more successfully. The curse of dimension-
ality also plays a role here; a problem may become intractable because of its dimension before we begin
to see asymptotic convergence to a nicer upper bound on complexity. For this reason, the literature often
speaks of algorithms performing poorly or well in high dimension versus in low dimension. Rather than
give a conclusive recommendation, we have attempted to outline several important variations which each
provide significant asymptotic improvements in the overall operating complexity of the LLL algorithm.
However, these may not be the preferred methods in practice.

References

[1] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 99–108. ACM, 1996.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 284–293. ACM, 1997.

[3] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pages 601–610. ACM, 2001.

[4] J. Blömer. Closest vectors, successive minima, and dual HKZ-bases of lattices. Automata, Languages and Programming,
pages 248–259, 2000.

[5] P.B. Borwein. Computational excursions in analysis and number theory. Springer Verlag, 2002.

[6] H. Cohen. A course in computational algebraic number theory. Springer Verlag, 1993.

[7] J.H. Conway, N.J.A. Sloane, and E. Bannai. Sphere packings, lattices, and groups. Springer Verlag, 1999.

[8] N. Gama, N. Howgrave-Graham, H. Koy, and P. Nguyen. Rankins constant and blockwise lattice reduction. Advances
in Cryptology-CRYPTO 2006, pages 112–130, 2006.

17

[9] N. Gama and P.Q. Nguyen. Finding short lattice vectors within mordell’s inequality. In Proceedings of the 40th annual
ACM symposium on Theory of computing, pages 207–216. ACM, 2008.

[10] N. Gama and P.Q. Nguyen. Predicting lattice reduction. In Proceedings of the theory and applications of cryptographic
techniques 27th annual international conference on Advances in cryptology, pages 31–51. Springer-Verlag, 2008.

[11] G. Hanrot. LLL: a tool for effective diophantine approximation. In P.Q. Nguyen and B. Vallée, editors, The LLL
Algorithm, pages 215–263. Springer, 2010.

[12] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal of Cryptology, 11(3):161–185, 1998.

[13] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of operations research, pages
415–440, 1987.

[14] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534, 1982.

[15] A. May. Using LLL-reduction for solving RSA and factorization problems. In P.Q. Nguyen and B. Vallée, editors, The
LLL Algorithm, pages 315–348. Springer, 2010.

[16] D. MICCIANCIO. The shortest vector in a lattice is hard to approximate to within some constant. SIAM journal on
computing, 30(6):2008–2035, 2001.

[17] D. Micciancio. Efficient reductions among lattice problems. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 84–93. Society for Industrial and Applied Mathematics, 2008.

[18] D. Micciancio. Cryptographic functions from worst-case complexity assumptions. In P.Q. Nguyen and B. Vallée, editors,
The LLL Algorithm, pages 427–452. Springer, 2010.

[19] D. Micciancio. Lattice algorithms and applications. University Lecture Notes, April 2011.

[20] D. Micciancio and O. Regev. Lattice-based cryptography. Post-quantum cryptography, pages 147–191, 2009.

[21] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice problems based on
voronoi cell computations. In Proceedings of the 42nd ACM symposium on Theory of computing, pages 351–358. ACM,
2010.

[22] P. Nguyen and J. Stern. The two faces of lattices in cryptology. Cryptography and Lattices, pages 146–180, 2001.

[23] P.Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM Journal on Computing, 39(3):874–903,
2009.

[24] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical computer science, 53(2-
3):201–224, 1987.

[25] C.P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal of Algorithms, 9(1):47–62, 1988.

[26] C.P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems.
Mathematical programming, 66(1):181–199, 1994.

[27] A. Schönhage. Factorization of univariate integer polynomials by Diophantine approximation and an improved basis
reduction algorithm. Automata, languages and programming, pages 436–447, 1984.

[28] D. Simon. Selected applications of LLL in number theory. In P.Q. Nguyen and B. Vallée, editors, The LLL Algorithm,
pages 265–282. Springer, 2010.

[29] A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical Report 249, ETH Zurich, Dept. Comp.
Sc., July 1996.

18

